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Abstract—Accurate and efficient data classification 
techniques are of vital importance to many problems, and are 
rapidly developing in recent decades. K-Nearest Neighbor 
algorithm (KNN), as one of the most important algorithms, is 
widely used in text categorization, predictive analysis, data 
mining and image recognition, etc. To accelerate the 
algorithm and to optimize the parallel implementation 
solution are two key issues of KNN. In this paper, we 
propose a new solution to speed up KNN algorithm on 
FPGA based heterogeneous computing system using 
OpenCL. Based on FPGA’s parallel pipeline structure, a 
specific bubble sort algorithm is designed to optimize KNN 
algorithm. The results have been shown that the efficiency of 
the solution in our paper is much higher than conventional 
GPU based KNN algorithm implementation. 
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I.  INTRODUCTION  
Owing to the rapid rise of resources integration, 

classification algorithms can be parallelizedly mapped on the 
Field Programmable Gate Arrays (FPGAs). Heterogeneous 
computing system architecture, which is constituted by 
FPGAs and CPUs, would become a meaningful architecture 
for its energy efficiency. However, the complexity of 
programmability is the major problem for designers to use 
this kind of architecture. Compared to traditional HDL-based 
design (High Description Language: Verilog, VHDL, etc.), 
some new approaches [1] have been established to reduce 
development time by giving access to a high-level 
framework. Open Computing Language (OpenCL) provides 
support to FPGA targets through Altera’s implementation of 
an OpenCL compiler. By using Altera’s OpenCL compiler, 
we are able to map the algorithms on parallel-pipeline 
structures implemented by internal resources of FPGAs. 

K-Nearest Neighbor algorithm (KNN) is one of the most 
important algorithms used in text categorization, predictive 
analysis, data mining, image recognition etc [2]. The 
classical KNN method has gained its place as one of the 10 
most important data mining algorithms developed in the 20th 

century [3]. Unfortunately, the computational cost of KNN is 
extremely intensive and the distance calculation and rank 
could be time consuming.  

In this paper, we present an efficient parallel 
implementation of KNN algorithm using FPGA based 
heterogeneous computing system architecture, aimed at 
optimizing classical KNN algorithm. Traditional approach of 
distance rank needs to be done by full permutation before the 
k minimum distances are found [4]. However, due to the fact 
that in KNN only k minimum distances are necessary, we 
determine to implement a partial sort method which will 
merely sort out the k minimum distances of the query object. 
By introducing the idea of bubble sort into the distance rank 
process, we efficiently achieved the goal. For each query 
object, k work-items are used instead of the original n. Thus, 
the cost of hardware resources is reduced.  

The rest of this paper is organized as follows. Section II 
presents other works related to the subject. Section II 
describes the KNN algorithm as well as the OpenCL 
program architecture. In Section III we propose the bubble 
sort enhanced KNN algorithm based on FPGA based 
heterogeneous computing platform and Section V details the 
performance results and comparisons. 

II. RELATED WORK 
Many works to accelerate the KNN algorithm have been 

done, but most of them focused on the optimization of 
algorithm strategy instead of implementation architecture. 
Besides, the energy efficient has become a crucial criterion, 
along computing speed and resources occupation. 

Garcia et al. [5] proposed the first GPU-based KNN 
algorithm which is at least 10 times faster than traditional 
CPU implementation. In this paper comb sort and insertion 
sort were chosen to demonstrate their algorithm. Later, 
Nolan [4] came up with a method aiming at improving the 
performance of the algorithm by using a ranking strategy and 
bitonic sort. Quansheng et al. [6] proposed a GPU-based 
implementation of brute-force KNN using the CUDA-based 
radix sort [7] whose computing speed is 12 to 13 times faster 
than the sequential CPU program. In 2009, Liang et al. [8] 
proposed a new CUDA-based parallel implementation of 
KNN algorithm, namely CUKNN. In the work they use 
streaming and coalesced data access to improve the 
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performance. Then Sun et al. [9] proposed a distributed 
approach for KNN on large instances. They introduced two 
layers of parallelization. In the first layer, they distribute the 
data to several GPU enabled nodes. In the second layer, 
which is a CUDA layer, they compute the k-nearest 
neighbours for each query point. Finally, all the results are 
combined in the merging step. 

III. CONTEXT 

A. K Nearest Neighbor algorithm 
KNN algorithm is used to classify objects by a majority 

vote of the k nearest reference objects. Thus, KNN consists 
of two time consuming processes: distance computing and 
distance ranking. Our work focuses on these two parts. 

The calculation of distances can be fully parallelized 
because each distance computation is independent. This 
property makes KNN perfectly suitable for an FPGA based 
heterogeneous architecture. In our work, after transferring 
the data from CPU to FPGA, each work-item performs the 
distance calculation between the query object and a reference 
object. 

Through the distance computing process, the distances 
matrix between all the query objects and reference objects is 
ready. Then distance rank process is performed to find the k 
nearest neighbors for each query object. 

Bubble sort is a basic algorithm in the field of computer 
science, and the most popular used quicksort is based on it. 
We choose to use bubble sort in our KNN algorithm for the 
following reasons: Each bubble will eventually pick out the 
smallest element in the current queue. Since every bubble 
compares only two elements at one time and then moves on 
to the next pair, this process can be easily parallelized. In 
KNN algorithm only the k smallest distances are necessary 
for vote, so only k bubbles would be used to handle the sort, 
which makes this approach more suitable than quicksort in 
KNN classification. The process is illustrated in Figure1. 

Finally voting process is performed to classify the query 
objects. Considering this process is not the main time-
consuming part of KNN algorithm, our works mainly focus 
on the former two processes. 

 
Figure 1. Bubble sort�

B. OpenCL Architecture 
OpenCL [10] is a framework for parallel programming 

on heterogeneous platforms, and it is based on a runtime host 
library and C99 extensions for device programming, adapted 
to support vectorized data types, synchronization points, and 
other functionalities. OpenCL is a standard implemented on 
several hardware architectures by manufacturers. An 
OpenCL program can be executed on any of those devices 
with only a handful of modifications, allowing portability. 
As shown on Figure 2, an OpenCL device is divided into 

compute units, which execute multiple copies (work-items) 
of a piece of code (kernel). However, performances can vary 
according to the compatibility between the program and the 
architecture of the targeted device.  

 
Figure 2. OpenCL platform�

 
The master of an OpenCL architecture (the host) handles 

the application’s data-flow to the connected devices through 
queues of orders. Data movement is thus explicitly specified 
by the programmer. This data management relies on a 
relaxed memory consistency model, with three memory 
levels: global, local and private. The work-items on a device 
are organized into work-groups which share a common 
memory region (local memory) and synchronization points. 
This memory level plays a role as a cache-coherent memory 
for the programmer, which eases any data partitioning 
problem that may arise: every work-item within a work-
group can access any data stored in the address space of the 
local memory. The global memory can be accessed by any 
work-group and by the host. Access to global memory can be 
coalesced to reduce latency, provided that accessed pieces of 
data are adjacent. Nevertheless, each work-item has access to 
a single private memory region and access to global data is 
always slower than access to local data. 

Two different devices have been used as implementation 
targets: an FPGA board as the final target, and a GPU as an 
initial target. The use of a GPU board reduced development 
time through faster compilation and thus shorter debug and 
development iterations. It has also served as a reference to 
compare the results accuracy and computation times of the 
proposed acceleration solutions. 

IV. BUBBLE SORT ENHANCED KNN: AN OPENCL-BASED 
PARALLEL IMPLEMENTATION OF KNN 

A. OpenCL Implementation 
Compared with traditional HDL design methodology, 

work scheduling on hardware resources is delegated to 
device in OpenCL. The developers only need to consider 
about the necessary number of work-items in the host 
program and distribute the workload to the device’s 
resources optimally. There is no need to program a layer of 
control over the massive cores. Enqueueing far more work 
than what can be processed at once on the device can then 
help it optimize its use of hardware resources, and is actually 
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necessary to reach an acceleration factor that balances the 
communication overhead between the host and the device. 

B. Distance Calculation Kernel 
This kernel is proposed to maximize the concurrency of 

the distance calculation handled by each work-item. For the 
reason that the latency of global memory access is high, it’s 
necessary to take advantage of local memory access. 

Distance calculation can be fully parallelized since each 
distance between a query object and a reference object is 
independent. This feature contributes to KNN’s parallel 
implementation on FPGA. The distance calculation kernel is 
parallelized in a data-parallel fashion. The reference dataset 
is loaded into the local memory so that each work-item can 
get access to the reference objects. The process is illustrated 
in Figure 3. 

 
Figure 3. Distance calculation kernel 

C. Distance Sorting Kernel 
Once the distances matrix between the query objects and 

the reference objects are gained, distance sort kernel is 
launched to find the k smallest distances in each row of the 
matrix. 

For each query object, we use k work-items to find the k 
nearest neighbors by using a partial bubble sort. In bubble 
sort, each bubble carries the smallest distance out from the 
head of one row to the end. For example, when the first 
bubble comes to compare the 3rd and 4th distances in a row, 
the second bubble can be launched to compare the 1st and 
2nd distances, so on and so forth. Thus, there will be 3 stages: 
bubble increase, bubble saturated and bubble decrease 
periods. Once the k-th bubble reaches the end of each row, 
the k nearest neighbors are chosen out. All the 3 processes 
are shown in Figure 4. 

 

  

 
Figure 4. Distance sort kernel 

V. RESULTS 
In order to verify the approach, both GPU based and 

FPGA based architectures have been implemented. In this 
section, the results of these implementations are presented. 

A. Test Environment 
Three target technologies are considered: a CPU on 

which the reference software runs, a GPU for development 
and comparison purposes, and an FPGA. The CPU is an Intel 
Core i7-3770K running at 3.5GHz, with the reference 
software written in Matlab. Four cores of the i7 are used 
during tests. The operating system running on the CPU is a 
Windows 7 kernel with 64 bits support. The targeted GPU is 
an AMD Radeon HD7950 with 28 compute units and 
maximum working frequency 900MHz. The board’s global 
memory consists of a 3 GB GDDR5 memory with 240 GB/s 
of bandwidth and an access from the host through a PCIe 3.0 
connection with x16 lanes. Local memory on the GPU is 32 
kB per compute unit. 

The FPGA board is a Terasic DE4 with a Stratix IV 
4SGX530. Global memory is stored in two DDR2 memory 
banks, with a maximum bandwidth of 12.75 GB/s to and 
from the FPGA(at a 400MHz clock rate), and is accessible 
from the host through a PCIe gen2 4x connection. The PCIe 
connection has a maximum bandwidth of 500 MB/s per lane, 
meaning the DE4 board’s maximum bandwidth is 2 GB/s. 
The local memory is implemented through an interconnect 
structure that gives access to on-chip RAM blocks as simple 
dual port RAMs, running at 600 MHz. Specifically, M9K 
RAM blocks are used(RAM blocks of 256x36 bits). Private 
memory is implemented as flip-flops within the data flow 
and thus runs at the kernel’s frequency. Each kernel 
implemented on the FPGA board was compiled with Quartus 
II 64 bits. 

B. Hardware Resources Management and Utilization 
We use KDD-CUP 2004 quantum physics data set [11] 

to test the performance of our KNN algorithm. This data set 
is used to predict the classification of the particles in high 
energy collider experiments of quantum physics. It stores the 
physical features and the class label of each particle. The 
particles are converted into textual records, where unique 
IDs are assigned. To take full advantage of the hardware 
resources, we use 20480 records out of 50000 records. The 
number of dimensions of each record is 64. Since K is 
usually not large compared to the number of reference 
objects, we set it to 20 without loss of generality. For the fact 
that query objects are transferred and processed in batches, 
I/O time for query objects is included in the comparison. 
This provides a good compromise between computational 
speed and hardware constraints (in terms of memory 
resources). Further gain in efficiency could be achieved by 
manual fine tuning, as seen in classical FPGA designs. We 
chose not to do so as it would not yield significant enough 
benefits compared with the necessary development time but 
would defeat the purpose of using the OpenCL standard. 

Distance computation kernel and distance sort kernel 
described in Section IV are detailed below. Table I shows 
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resources’ usage condition of the KNN system when 
implemented on the DE4 board.  

The kernels were parallelized using several options of 
Altera’s OpenCL Compiler. First, compiler directives can be 
used to either replicate entire hardware pipelines or to 
vectorised the kernel execution. When replicating the 
pipeline, computations can be done independently from one 
another, while vectorization corresponds to an SIMD work 
division (Single Instruction, Multiple Data). From empiric 
observations, vectorization is usually a less resource-
consuming optimization than replication. It also eases 
memory coalescing optimization. However, it is more 
constraining: vectorization can only be done by powers of 
two, and be a divider of the total work group size. Besides, it 
is also possible to unroll any loop included in the kernel 
through #pragma directives. Loop unrolling uses less 
memory than a full replication, while giving another way to 
increase throughput and optimize resource consumption. 
Loop unrolling, replication and vectorization are 3 
parameters that help reach the best compromise between 
resource utilization, latency and throughput. In our case, the 
distance computation kernel contains an internal loop, which 
has been unrolled 8 times. The distance sort kernel has been 
vectorised twice to make full use of possible resources on the 
FPGA. Since the bandwidth of global memory access is 
limited, no more vectorization or pipeline replication can be 
implemented for fear of performance degradation. 

 
Table I.        RESOURCE USAGE 

 
Stratix IV EP4SGX530 

Logic utilization 64%
Combinational ALUTs 135 K/415 K(32%)

Dedicated logic registers 207 K/415 K(50%)
Memory bits 5452 K/20736 K(26%)

DSP block(18-bit) 80/1024(8%)
Clock Frequency 131.42 MHz

C. Comparison 
Table II illustrates the performances for each kernel on 

GPU and FPGA, along with the software reference results. 
We chose to compute 20 query objects in our tests due to the 
fact that all the results would be averaged to each query 
object at last. The GPU accelerated our KNN algorithm by 
410 times the speed of the 4-threads CPU implementation, 
while FPGA achieved 148 times.  

When the power consumption is taken into consideration, 
it is interesting to see that the CPU implementation could 
merely classify 0.015 query objects per Joule and GPU 
achieved 4.024, while FPGA 12.056.  

From table II we see that although GPU performs better 
in terms of computation speed, if the performances are 
averaged to Joule, FPGA becomes superior. The energy 
efficiency ratio (EER) of FPGA based heterogeneous 
computing system is 3 times that of GPU based 
heterogeneous computing system. 

 

Table IVI.        PERFORMANCES 
Platform CPU GPU FPGA 

Feature size/nm 22 28 40 
Runtime/ms 10211.05 24.85 69.12

Objects/s 1.96 804.96 289.34
Speedup / 410 148 
Power/w 130 200 24
Objects/J 0.015 4.024 12.056

EER / 268 804 

VI. CONCLUSION 
This paper has presented a bubble sort enhanced KNN 

algorithm using the FPGA based heterogeneous computing 
system. In order to optimize KNN algorithms respectively on 
GPU based and FPGA based heterogeneous computing, we 
verified the new approach’s high versatility and portability. 
Finally we showed that by optimizing KNN algorithm in 
accordance with the structures and features of the FPGA 
device, we achieved better performances than the traditional 
GPU device. The EER of FPGA based heterogeneous 
computing system achieved 3 times that of GPU based 
heterogeneous computing system. 
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