
An efficient KNN algorithm implemented on FPGA based heterogeneous computing
system using OpenCL

Yuliang Pu, Jun Peng, Letian Huang
School of Communication and Information Engineering

University of Electronic Science and Technology of
China UESTC
Chengdu, China

proust315@126.com,pj_for@yeah.net,huanglt@uestc.e
du.cn

John Chen
China University Program

Altera
Chengdu, China

jochen@altera.com

Abstract—Accurate and efficient data classification
techniques are of vital importance to many problems, and are
rapidly developing in recent decades. K-Nearest Neighbor
algorithm (KNN), as one of the most important algorithms, is
widely used in text categorization, predictive analysis, data
mining and image recognition, etc. To accelerate the
algorithm and to optimize the parallel implementation
solution are two key issues of KNN. In this paper, we
propose a new solution to speed up KNN algorithm on
FPGA based heterogeneous computing system using
OpenCL. Based on FPGA’s parallel pipeline structure, a
specific bubble sort algorithm is designed to optimize KNN
algorithm. The results have been shown that the efficiency of
the solution in our paper is much higher than conventional
GPU based KNN algorithm implementation.

Keywords- KNN; FPGA; Heterogeneous Computing;
OpenCL; Bubble Sort

I. INTRODUCTION
Owing to the rapid rise of resources integration,

classification algorithms can be parallelizedly mapped on the
Field Programmable Gate Arrays (FPGAs). Heterogeneous
computing system architecture, which is constituted by
FPGAs and CPUs, would become a meaningful architecture
for its energy efficiency. However, the complexity of
programmability is the major problem for designers to use
this kind of architecture. Compared to traditional HDL-based
design (High Description Language: Verilog, VHDL, etc.),
some new approaches [1] have been established to reduce
development time by giving access to a high-level
framework. Open Computing Language (OpenCL) provides
support to FPGA targets through Altera’s implementation of
an OpenCL compiler. By using Altera’s OpenCL compiler,
we are able to map the algorithms on parallel-pipeline
structures implemented by internal resources of FPGAs.

K-Nearest Neighbor algorithm (KNN) is one of the most
important algorithms used in text categorization, predictive
analysis, data mining, image recognition etc [2]. The
classical KNN method has gained its place as one of the 10
most important data mining algorithms developed in the 20th

century [3]. Unfortunately, the computational cost of KNN is
extremely intensive and the distance calculation and rank
could be time consuming.

In this paper, we present an efficient parallel
implementation of KNN algorithm using FPGA based
heterogeneous computing system architecture, aimed at
optimizing classical KNN algorithm. Traditional approach of
distance rank needs to be done by full permutation before the
k minimum distances are found [4]. However, due to the fact
that in KNN only k minimum distances are necessary, we
determine to implement a partial sort method which will
merely sort out the k minimum distances of the query object.
By introducing the idea of bubble sort into the distance rank
process, we efficiently achieved the goal. For each query
object, k work-items are used instead of the original n. Thus,
the cost of hardware resources is reduced.

The rest of this paper is organized as follows. Section II
presents other works related to the subject. Section II
describes the KNN algorithm as well as the OpenCL
program architecture. In Section III we propose the bubble
sort enhanced KNN algorithm based on FPGA based
heterogeneous computing platform and Section V details the
performance results and comparisons.

II. RELATED WORK
Many works to accelerate the KNN algorithm have been

done, but most of them focused on the optimization of
algorithm strategy instead of implementation architecture.
Besides, the energy efficient has become a crucial criterion,
along computing speed and resources occupation.

Garcia et al. [5] proposed the first GPU-based KNN
algorithm which is at least 10 times faster than traditional
CPU implementation. In this paper comb sort and insertion
sort were chosen to demonstrate their algorithm. Later,
Nolan [4] came up with a method aiming at improving the
performance of the algorithm by using a ranking strategy and
bitonic sort. Quansheng et al. [6] proposed a GPU-based
implementation of brute-force KNN using the CUDA-based
radix sort [7] whose computing speed is 12 to 13 times faster
than the sequential CPU program. In 2009, Liang et al. [8]
proposed a new CUDA-based parallel implementation of
KNN algorithm, namely CUKNN. In the work they use
streaming and coalesced data access to improve the

2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-9969-9/15 $31.00 © 2015 IEEE

DOI 10.1109/FCCM.2015.7

167

performance. Then Sun et al. [9] proposed a distributed
approach for KNN on large instances. They introduced two
layers of parallelization. In the first layer, they distribute the
data to several GPU enabled nodes. In the second layer,
which is a CUDA layer, they compute the k-nearest
neighbours for each query point. Finally, all the results are
combined in the merging step.

III. CONTEXT

A. K Nearest Neighbor algorithm
KNN algorithm is used to classify objects by a majority

vote of the k nearest reference objects. Thus, KNN consists
of two time consuming processes: distance computing and
distance ranking. Our work focuses on these two parts.

The calculation of distances can be fully parallelized
because each distance computation is independent. This
property makes KNN perfectly suitable for an FPGA based
heterogeneous architecture. In our work, after transferring
the data from CPU to FPGA, each work-item performs the
distance calculation between the query object and a reference
object.

Through the distance computing process, the distances
matrix between all the query objects and reference objects is
ready. Then distance rank process is performed to find the k
nearest neighbors for each query object.

Bubble sort is a basic algorithm in the field of computer
science, and the most popular used quicksort is based on it.
We choose to use bubble sort in our KNN algorithm for the
following reasons: Each bubble will eventually pick out the
smallest element in the current queue. Since every bubble
compares only two elements at one time and then moves on
to the next pair, this process can be easily parallelized. In
KNN algorithm only the k smallest distances are necessary
for vote, so only k bubbles would be used to handle the sort,
which makes this approach more suitable than quicksort in
KNN classification. The process is illustrated in Figure1.

Finally voting process is performed to classify the query
objects. Considering this process is not the main time-
consuming part of KNN algorithm, our works mainly focus
on the former two processes.

Figure 1. Bubble sort�

B. OpenCL Architecture
OpenCL [10] is a framework for parallel programming

on heterogeneous platforms, and it is based on a runtime host
library and C99 extensions for device programming, adapted
to support vectorized data types, synchronization points, and
other functionalities. OpenCL is a standard implemented on
several hardware architectures by manufacturers. An
OpenCL program can be executed on any of those devices
with only a handful of modifications, allowing portability.
As shown on Figure 2, an OpenCL device is divided into

compute units, which execute multiple copies (work-items)
of a piece of code (kernel). However, performances can vary
according to the compatibility between the program and the
architecture of the targeted device.

Figure 2. OpenCL platform�

The master of an OpenCL architecture (the host) handles

the application’s data-flow to the connected devices through
queues of orders. Data movement is thus explicitly specified
by the programmer. This data management relies on a
relaxed memory consistency model, with three memory
levels: global, local and private. The work-items on a device
are organized into work-groups which share a common
memory region (local memory) and synchronization points.
This memory level plays a role as a cache-coherent memory
for the programmer, which eases any data partitioning
problem that may arise: every work-item within a work-
group can access any data stored in the address space of the
local memory. The global memory can be accessed by any
work-group and by the host. Access to global memory can be
coalesced to reduce latency, provided that accessed pieces of
data are adjacent. Nevertheless, each work-item has access to
a single private memory region and access to global data is
always slower than access to local data.

Two different devices have been used as implementation
targets: an FPGA board as the final target, and a GPU as an
initial target. The use of a GPU board reduced development
time through faster compilation and thus shorter debug and
development iterations. It has also served as a reference to
compare the results accuracy and computation times of the
proposed acceleration solutions.

IV. BUBBLE SORT ENHANCED KNN: AN OPENCL-BASED
PARALLEL IMPLEMENTATION OF KNN

A. OpenCL Implementation
Compared with traditional HDL design methodology,

work scheduling on hardware resources is delegated to
device in OpenCL. The developers only need to consider
about the necessary number of work-items in the host
program and distribute the workload to the device’s
resources optimally. There is no need to program a layer of
control over the massive cores. Enqueueing far more work
than what can be processed at once on the device can then
help it optimize its use of hardware resources, and is actually

168

necessary to reach an acceleration factor that balances the
communication overhead between the host and the device.

B. Distance Calculation Kernel
This kernel is proposed to maximize the concurrency of

the distance calculation handled by each work-item. For the
reason that the latency of global memory access is high, it’s
necessary to take advantage of local memory access.

Distance calculation can be fully parallelized since each
distance between a query object and a reference object is
independent. This feature contributes to KNN’s parallel
implementation on FPGA. The distance calculation kernel is
parallelized in a data-parallel fashion. The reference dataset
is loaded into the local memory so that each work-item can
get access to the reference objects. The process is illustrated
in Figure 3.

Figure 3. Distance calculation kernel

C. Distance Sorting Kernel
Once the distances matrix between the query objects and

the reference objects are gained, distance sort kernel is
launched to find the k smallest distances in each row of the
matrix.

For each query object, we use k work-items to find the k
nearest neighbors by using a partial bubble sort. In bubble
sort, each bubble carries the smallest distance out from the
head of one row to the end. For example, when the first
bubble comes to compare the 3rd and 4th distances in a row,
the second bubble can be launched to compare the 1st and
2nd distances, so on and so forth. Thus, there will be 3 stages:
bubble increase, bubble saturated and bubble decrease
periods. Once the k-th bubble reaches the end of each row,
the k nearest neighbors are chosen out. All the 3 processes
are shown in Figure 4.

Figure 4. Distance sort kernel

V. RESULTS
In order to verify the approach, both GPU based and

FPGA based architectures have been implemented. In this
section, the results of these implementations are presented.

A. Test Environment
Three target technologies are considered: a CPU on

which the reference software runs, a GPU for development
and comparison purposes, and an FPGA. The CPU is an Intel
Core i7-3770K running at 3.5GHz, with the reference
software written in Matlab. Four cores of the i7 are used
during tests. The operating system running on the CPU is a
Windows 7 kernel with 64 bits support. The targeted GPU is
an AMD Radeon HD7950 with 28 compute units and
maximum working frequency 900MHz. The board’s global
memory consists of a 3 GB GDDR5 memory with 240 GB/s
of bandwidth and an access from the host through a PCIe 3.0
connection with x16 lanes. Local memory on the GPU is 32
kB per compute unit.

The FPGA board is a Terasic DE4 with a Stratix IV
4SGX530. Global memory is stored in two DDR2 memory
banks, with a maximum bandwidth of 12.75 GB/s to and
from the FPGA(at a 400MHz clock rate), and is accessible
from the host through a PCIe gen2 4x connection. The PCIe
connection has a maximum bandwidth of 500 MB/s per lane,
meaning the DE4 board’s maximum bandwidth is 2 GB/s.
The local memory is implemented through an interconnect
structure that gives access to on-chip RAM blocks as simple
dual port RAMs, running at 600 MHz. Specifically, M9K
RAM blocks are used(RAM blocks of 256x36 bits). Private
memory is implemented as flip-flops within the data flow
and thus runs at the kernel’s frequency. Each kernel
implemented on the FPGA board was compiled with Quartus
II 64 bits.

B. Hardware Resources Management and Utilization
We use KDD-CUP 2004 quantum physics data set [11]

to test the performance of our KNN algorithm. This data set
is used to predict the classification of the particles in high
energy collider experiments of quantum physics. It stores the
physical features and the class label of each particle. The
particles are converted into textual records, where unique
IDs are assigned. To take full advantage of the hardware
resources, we use 20480 records out of 50000 records. The
number of dimensions of each record is 64. Since K is
usually not large compared to the number of reference
objects, we set it to 20 without loss of generality. For the fact
that query objects are transferred and processed in batches,
I/O time for query objects is included in the comparison.
This provides a good compromise between computational
speed and hardware constraints (in terms of memory
resources). Further gain in efficiency could be achieved by
manual fine tuning, as seen in classical FPGA designs. We
chose not to do so as it would not yield significant enough
benefits compared with the necessary development time but
would defeat the purpose of using the OpenCL standard.

Distance computation kernel and distance sort kernel
described in Section IV are detailed below. Table I shows

169

resources’ usage condition of the KNN system when
implemented on the DE4 board.

The kernels were parallelized using several options of
Altera’s OpenCL Compiler. First, compiler directives can be
used to either replicate entire hardware pipelines or to
vectorised the kernel execution. When replicating the
pipeline, computations can be done independently from one
another, while vectorization corresponds to an SIMD work
division (Single Instruction, Multiple Data). From empiric
observations, vectorization is usually a less resource-
consuming optimization than replication. It also eases
memory coalescing optimization. However, it is more
constraining: vectorization can only be done by powers of
two, and be a divider of the total work group size. Besides, it
is also possible to unroll any loop included in the kernel
through #pragma directives. Loop unrolling uses less
memory than a full replication, while giving another way to
increase throughput and optimize resource consumption.
Loop unrolling, replication and vectorization are 3
parameters that help reach the best compromise between
resource utilization, latency and throughput. In our case, the
distance computation kernel contains an internal loop, which
has been unrolled 8 times. The distance sort kernel has been
vectorised twice to make full use of possible resources on the
FPGA. Since the bandwidth of global memory access is
limited, no more vectorization or pipeline replication can be
implemented for fear of performance degradation.

Table I. RESOURCE USAGE

Stratix IV EP4SGX530

Logic utilization 64%
Combinational ALUTs 135 K/415 K(32%)

Dedicated logic registers 207 K/415 K(50%)
Memory bits 5452 K/20736 K(26%)

DSP block(18-bit) 80/1024(8%)
Clock Frequency 131.42 MHz

C. Comparison
Table II illustrates the performances for each kernel on

GPU and FPGA, along with the software reference results.
We chose to compute 20 query objects in our tests due to the
fact that all the results would be averaged to each query
object at last. The GPU accelerated our KNN algorithm by
410 times the speed of the 4-threads CPU implementation,
while FPGA achieved 148 times.

When the power consumption is taken into consideration,
it is interesting to see that the CPU implementation could
merely classify 0.015 query objects per Joule and GPU
achieved 4.024, while FPGA 12.056.

From table II we see that although GPU performs better
in terms of computation speed, if the performances are
averaged to Joule, FPGA becomes superior. The energy
efficiency ratio (EER) of FPGA based heterogeneous
computing system is 3 times that of GPU based
heterogeneous computing system.

Table IVI. PERFORMANCES
Platform CPU GPU FPGA

Feature size/nm 22 28 40
Runtime/ms 10211.05 24.85 69.12

Objects/s 1.96 804.96 289.34
Speedup / 410 148
Power/w 130 200 24
Objects/J 0.015 4.024 12.056

EER / 268 804

VI. CONCLUSION
This paper has presented a bubble sort enhanced KNN

algorithm using the FPGA based heterogeneous computing
system. In order to optimize KNN algorithms respectively on
GPU based and FPGA based heterogeneous computing, we
verified the new approach’s high versatility and portability.
Finally we showed that by optimizing KNN algorithm in
accordance with the structures and features of the FPGA
device, we achieved better performances than the traditional
GPU device. The EER of FPGA based heterogeneous
computing system achieved 3 times that of GPU based
heterogeneous computing system.

REFERENCES
[1] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z.

Zhang,“High-level synthesis for FPGAs: from prototyping to
deployment,”vol. 30, no. 4, pp. 473–491, Apr. 2011.

[2] Peng Y, Kou G, Shi Y, Chen ZX (2008) A descriptive framework for
the field of data mining and knowledge discovery. Int J Inf Technol
Decis Mak 7(4):639–682

[3] Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H.,
McLachlan, G.J., Ng,A., Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach,
M., Hand, D.J., Steinberg, D., 2007. Top10 algorithms in data
mining. Knowl. Inf. Syst. 14, 1–37.

[4] Graham N (2009) Improving the k-nearest neighbour algorithm with
CUDA. Technical report, School of CSSE, The University of Western
Australia.

[5] Garcia V, Debreuve E, Barlaud M (2008) Fast k nearest neighbor
search using GPU. In: IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW ‘08).
1–6.

[6] Quansheng K, Lei Z (2009) A practical GPU based kNN algorithm.
In: Proc. of the Second Symposium International Computer Science
and Computational Technology(ISCSCT’09). Academy Publisher,
151–155.

[7] Satish N, Harris M, GarlandM(2009) Designing e_cient sorting
algorithms for manycore GPUs. In: Proc. of the 2009 IEEE
International Symposium on Parallel&Distributed Processing.
Washington, DC, USA: IEEE Computer Society, IPDPS ‘09: 1–10.

[8] Liang S,Wang C, Liu Y, Jian L (2009) CUKNN: A parallel
implementation of knearest neighbor on cuda-enabled gpu. In: IEEE
Youth Conference on Information, Computing and
Telecommunication (YC-ICT ‘09). 415–418.

[9] Sun L, Stoller C, Newhall T (2010). Hybrid MPI and GPU approach
to e_ciently solving large kNN problems. Tera Grid Poster. URL
http://www.isgtw.org/pdfs/kNNposter.pdf. Accessed 2012 Aug 4.

[10] K. O. W. Group, “The opencl specification,” 2011. [Online].
Available: http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[11] KDD Cup 2004 Data (2011)
http://kodiak.cs.cornell.edu/kddcup/datasets.htm

170

